Showing posts with label evolvability. Show all posts
Showing posts with label evolvability. Show all posts

Monday, September 13, 2021

#72. Why There is Sex [evolution]

EV

Red, theory; black, fact.

The flower Coronilla varia L.

Sex is an evolvability adaptation

There are always two games in town: reproduction and evolution. Since we live on an unstable planet where the environment can change capriciously, species here have been selected for rapid evolvability per se to enable them to adapt to the occasional rapid environment changes and not go extinct. Apparently, mutations, the starting point for evolutionary adaptation, become more common when the organism is stressed, and stress may partly be a forecast of loss of fertility due to a developing genome-environment mismatch. Bacteria exhibit the large mutation of transformation under stress conditions, and 3 types of stress all increased the meiotic recombination rate of fruit flies (Stress-induced recombination and the mechanism of evolvability. Zhong W, Priest NK. Behavioral ecology and sociobiology. 2011;65:493-502). Recombination can involve unequal crossing-over in which changes in gene dose can occur due to gene duplication or deletion. However, since most mutations are deleterious (there are more ways to do something wrong than to do it better) many mutations will also reduce fertility, and at precisely the wrong moment: when a reduction in fertility is impending due to environment change. The answer was to split the population into two halves: the reproduction specialists and the selection specialists, and remix their respective genomes at each generation.

The roles of the two sexes

Females obviously do the heavy lifting of reproduction, and males seem to be the gene testers. So if a guy gets a bad gene, so long, and the luckier guy next to him then gets two wives. The phenomenon of greater male variability (Greater male than female variability in regional brain structure across the lifespan. Wierenga LM, Doucet GE, Dima D, Agartz I, Aghajani M, Akudjedu TN, Albajes‐Eizagirre A, Alnæs D, Alpert KI, Andreassen OA, Anticevic A. Karolinska Schizophrenia Project (KaSP) Consortium. Hum. Brain Mapp., doi. 2020;10, and I have never seen so many authors on a paper: 160.) suggests that mutations have more penetrance in males, as befits the male role of cannon fodder/selectees. What the male brings to the marriage bed, then, is field-tested genetic information. Male promiscuity can therefore be seen as a necessary part of this system, which allows many mutations to be field tested with minimal loss of whole-population fertility, because it is the females who are the limiting factor in population fertility.

Chromosomal mechanisms of greater male variability

Chromosomal diploidy may be a system for sheltering females from mutations, assuming that the default process is for the phenotype that develops to be the average of the phenotypes individually specified by the paternal and maternal chromosome sets. Averaging tends to mute the extremes. The males, however, may set up a winner-take-all competition between homologous chromosomes early in development, with inactivation of one of them chosen at random. The molecular machinery for this may be similar to that of random x-inactivation in females. The result will be greater penetrance of mutations through to the phenotype and thus greater male variability. 

Quantitative prediction

This reasoning predicts that on a given trait, male variability (as standard deviation) will be 41% greater than the female variability, a testable prediction. 41% = [SQRT(2) -1] × 100. Already in my reading I have found a figure of 30%, which is suggestive. 

Now all I have to do is reconcile all this with the laws of Mendelian inheritance. 

Mechanistic reconciliation with Mendel's laws

09-16-2021: This reconciliation seems to require an exemption mechanism built into the postulated chromosome inactivation process that operates on genes present in only one copy per parent. The effect of this mechanism will be to double the penetrance of dominant alleles at that gene. Therefore, in males, at single-copy genes, evolution of the machinery of sex is driven by the favorable mutations.

A lovers' heart drawn in dust






Saturday, December 14, 2019

# 59. Disaster Biology [evolution, evolutionary psychology]

EV     EP     

Red, theory; black, fact.

  • The habitat is a unit of selection, leading to group selection.
  • Much of evolution proceeds by an accumulation of founder effects, especially altruism in sexually reproducing species.
  • Opportunities for colonization of recently-emptied habitats are ephemeral.
  • Under disaster-prone conditions, this leads to selection pressure for migrant production and evolvability (i.e., a high rate of evolution, especially founder-effect evolution).
  • Language diversification in humans is an evolvability adaptation.
  • It works by preserving genetic founder effects from dilution by late-coming migrants, whose reproduction is held back by the difficulties of learning a new language. 
  • Xenophobia and persistent ethnicity markers (PEMs) can be explained in the same way.
  • The spread of linguistic and  PEM novelties in a population is predicted to be especially fast in newly colonized, previously empty habitats. <09-17-2020: Alternatively, the linguistic novelties may start as a thick patois developed by an oppressed group in the home habitat prior to becoming refugees, as a way to make plans under the noses of the oppressing group.>
  •  Refugee-producing adaptations sub serving dispersal can be called "tough altruism."
  • Populations producing more refugees are more likely to colonize further empty habitats, a selective advantage.
  • Disaster biology may be what is conceptually missing from theories of the origin of life (abiogenesis). 01-02-2020: i.e., the forerunners of the first cells may have been spores.>
  • Photo by Purnomo Capunk on Unsplash

Sunday, December 30, 2018

#47. Body-mod Bob's [evolution, evolutionary psychology]




EV     EP     
Red, theory; black, fact.

In the previous post, "Goddesses of the Glacier," evolution appears to be operating in cooperation with a general capacity for technology. Natural selection operates on the brain pathways underlying our aesthetic preferences concerning our own appearance and that of possible reproduction partners and then a technology is automatically developed to satisfy them.

As a first example, consider the oil and brush technology previously assumed for differentiating women from men by hair smoothness. A further step in this direction is to posit that hair color may have been used to code gender. The first step would have been selection for a blond(e) hair colour in both women and men. Since this is a very light colour, it will show the effect of dyeing maximally. Concurrently with this, the aesthetic preferences of men and women would have been differentiated by selection, resulting in blonde women who experience a mild euphoria from being blonde and blond men who experience a mild dysphoria from the same cause. The men would predictably get busy inventing hair-dyeing technologies to rectify this. The necessary dyes are readily obtained from plant sources such as woad and walnut shells. The result would be an effective blonde-female/nonblond-male gender code.

This style of evolution could be very fast if the brain pathways of aesthetic preferences require few mutations for their modification compared with the number required for the equivalent direct modification of the body. Let us assume this and see where it leads.

Faster evolution is generally favored if humans are typically in competition with other species to be the first to occupy a newly possible ecological niche. Such niches will be created in abundance with every dramatic change in the environment, such as a glaciation and the following deglaciation. Possibly, these specific events just slide the same suite of niches to higher or lower latitudes, but the amount of land area in each is likely to change, leading to under-capacity in some, and thus opportunity. These opportunities will vanish much faster than evolution can follow unless a diversity of phenotypes is already present in the prospective colonizing population, which might happen as a result of genetic drift in multiple, isolated sub-populations.

If technologically assisted evolution has general advantages, then we can expect its importance to grow with increases in the reach of technology. Today, we seem to be at a threshold, with male-to-female and female-to-male gender transitions becoming well known. Demand for this service is probably being driven by disordered neural development during fetal life due to contamination of the fetus by environmental pollutants that have estrogenic properties (e.g., bisphenol A, PCBs, phthalates, etc.). The result is the birth of individuals with disordered and mutually contradictory, gendered aesthetic preferences, which is tragic. However, it is an interesting natural experiment.

With further development of cell biology in the direction of supporting body-modification technology, who knows what bizarre hankerings will see the light of day on demand from some customer? Remember that in evolution, the mutation comes first, and the mutation is random. Predictably, and sadly, most such reckless acts of self-indulgence will be punished by reduced employability and reduced reproductive success, doubtless exacerbated by prejudice on the part of the normal, normative majority.

However, the very occasional success story is also to be expected, involving the creation of fortuitously hyperfunctional individuals, and thus the technologically assisted creation of a new pre-species of human.

If the engineering details learned by the body-modification trade during this process are then translated into germ-line genetic engineering, then a true artificial humanoid species will have been created.
After the Pleistocene, the Plasticine.

Photo by Дмитрий Хрусталев-Григорьев on Unsplash

Friday, June 1, 2018

#40. The 1950 Ramp [population, genetics, evolutionary psychology, engineering, neuroscience]

PO     EN     EP     NE     GE     
Red, theory; black, fact.

6-01-2018; 
Since about 1950, the world population has been increasing along a remarkably steady ramp function with no slackening in the rate of increase yet apparent, although one cycle of oscillation in the slope occurred during the Sixties. Malthusian reasoning predicts an exponential increase, which this is not. From several lines of evidence, I keep coming back to the idea that humans must have a subconscious population controller in their heads, and yet such a controller would have leveled out the increase by now. Until now, no theory has sufficed to explain the facts.

I here propose that the natural population curve for humans in good times is a saw-tooth waveform, with population ramps alternating with political convulsions that result in a large group being expelled permanently, resulting in the precipitous but limited drop in local population density that ends the saw-tooth cycle. This cycle accomplishes the ecological dispersal function to which I allude many times in these pages. The population must ramp up for a time to sustainably create the numbers needed for the expulsions. The WHO population curve shows only a ramp because it is a worldwide figure and therefore population losses in expelling regions are balanced by population increases in welcoming regions. This also implies that human population has been increasing in a way unrestrained by food or resource availability or any other external constraint since 1950, to now.

Clearly, human population is being controlled by instinctive factors, but not to a constant absolute density, but rather to a constant rate of increase. Population density would go up along the much faster, steeper, and more disastrous exponential curve of Malthus if there were actually no controller.

My formal training in engineering and neuroscience justifies a bit of speculation as to mechanisms at this point. Look first for such a controller in the hypothalamus, already known to control other variables, such as temperature, by feedback principles.

In school, I was taught that nature does not reinvent the wheel, which I understand to mean that once a brain structure evolves to serve a particular computational function, it will be tapped for all future needs for such a calculation. This process may make it grow larger or develop sub-nuclei, but additional, independent nuclei for the same computation will never evolve.

I will continue to assume that the controller is a conventional PID controller, as in previous posts. To make it control rate of increase rather than absolute population density, you put a differentiator in the feedback pathway. Look first in the amygdala for such a differentiator. If you are of the opinion that human population control is urgent, then you must knock out this differentiator and replace it with a simple feed-through connection. Fortunately, one common way for evolution to implement differentiation in mammals is to begin with such a feed-through connection and supplement it with an inhibitory, slow, parallel feed-forward connection. If this is the case here, then you just inhibit the feed-forward pathway pharmacologically as specifically as may be, and the job is done. Subjectively, the effect of such a drug would be to take away people's ability to get used to higher population density in deciding how many children to have. An increased propensity to riot should not occur.

I assumed in the last post that the political convulsions that produce dispersal are triggered by the value on the integrator of the PID controller rising above a threshold. However, in the above design solution, the convulsion would be triggered by the raw, undifferentiated population-density signal rising above some threshold. Look in the amygdala for this signal as well. Consistent with this, bilateral removal of the amygdalae and hippocampi in monkeys is known to have a profound taming effect accompanied by hypersexuality, known as the Kluver-Bucy syndrome.

6-17-2018: To be consistent, I would have to say that the differentiator for the population signal is more likely to be in the hippocampal formation by the argument of nature not reinventing the wheel, because in an earlier post, I interpreted the hippocampus as the site of four successive differentiations that carry out a Fourier transform by mapping sinusiodal waves back onto themselves at a particular best frequency, in the presence of a map of such best frequencies.

However, this setup would require the creation of two neuron-to-neuron connections for its evolution; a first connection to send the amygdalar raw population signal to the hippocampus, and a second to send the differentiated result back for further processing. At best, this would require two simultaneous mutations. Either change by itself would be at best useless and could never be selected. This appears to be another example of irreducible complexity requiring the bi-mutation mechanism described in the previous post. 

The mechanisms usually offered to explain cases of apparent irreducible complexity, such as spandrelling, exaptation, and scaffolding, all appear to lack time efficiency and processiveness. I previously said that in evolution there are no (absolute)  deadlines, but relative deadlines can easily be created by an interaction of processes. In the presence of relative deadlines, such as adaptive footraces to be the first clade to exploit a newly-habitable area or a new niche, time is of the essence and selection for speed and evolvability can be expected. Such selection will create mechanisms such as crossing over that enhance evolvability.

Saturday, May 26, 2018

#39. Can Irreducible Complexity Evolve? [genetics, evolution]

EV     GE     
Red, theory; black, fact.

5-26-2018: Influential biologist Richard Dawkins wrote in "The God Delusion" that a genuine case of irreducible complexity will never be found in biology. A case of irreducible complexity would be some adaptation that would require an intelligent designer because it could never evolve one mutation at a time, and Dawkins believes there is no such intelligent designer in biology.

In classic natural selection, each mutation must be individually beneficial to its possessor in order for selection to increase its prevalence in the population to the point where the next incremental, one-mutation improvement becomes statistically possible. In this way, all manner of wondrous things are supposed to evolve bit by tiny bit.

However, I am seeing irreducible complexity all over the place these days. For example, your upper-jaw dentition must mesh pretty accurately with that of your lower jaw or you can't eat. Thus, the process of evolutionary foreshortening of the muzzle of the great apes to the flat human face could never have happened, assuming that a single mutation affects only the upper or lower jaw. But it did. (Let us gloss over the fact that that is an assumption, because the contrary seems to require non-local rules in development.)

Furthermore, how can any instinctive signaling system evolve one mutation at a time? At a minimum, you always need both the transmitter adaptation and the receiver adaptation, not to mention further mutations to connect the receiver circuit to something useful. The evolution of altruism presents a similar problem. The lonely first altruist in the population is always at a disadvantage in competition with the more selfish non-mutants unless it also has a signaling system that lets it recognize fellow altruists (initially, close relatives) and a further mutation that places the altruistic behavior under the control of the receiver part of this system. Thus, altruists would only be altruistic to their own kind, the requirement for altruism to be selected in the presence of selfishness. Finally, the various parts of this system must be indissolubly linked in a way that the non-altruists cannot fake.

My solution is to label the crossing-over events that occur during meiosis as "tetra-mutations." In crossing over, two homologous chromosomes pair up along their length and swap a long segment of DNA, a process requiring four double chain breaks and their corresponding repairs. Because of the presence of single-nucleotide polymorphisms, the homologous chromosomes are not exactly the same, so that each of the upstream sides of the four chain breaks ends up in a subtly different genetic environment. If the break point falls between a cis-acting regulatory element and the corresponding structural gene, for instance, the former may now control the expression of a slightly different protein. Thus, there could be as many as four distinct functional consequences of one crossing-over event. Why not call that a tetra-mutation?

In this way, a concerted change affecting four distinct sites becomes possible. The two ends of the recombinant segment can in principle be functionally unrelated initially. They become related if both are affected by the same tetra-mutation and the entire change increases fitness and is thus selected.

A single tetra-mutation could in principle produce viable altruism at one stroke because of the number of simultaneous changes involved. 

The probability of a combination of simultaneous local changes being beneficial to the organism is much smaller on mathematical grounds than is the probability of a given single-nucleotide change being beneficial. However, these unfavorable statistics are at least partly offset by the existence of a dedicated system for producing tetra-mutations in large numbers, namely meiosis, part of the process of maturation of egg cells and sperm cells.

In the big picture, tetra-mutations provide a way for a species to discontinuously jump into new niches as they open up, possibly explaining how a capacity for this kind of mutation could spread and become characteristic of surviving species over time. This idea also provides a ready explanation for the lack of transitional forms in the fossil record.

5-30-2018: Here is the search description again, in case you missed it or could not see all of it: Sexual reproduction may allow the evolution of irreducible complexity by increasing the intrinsic complexity of the basic building block of change, the mutation.

6-12-2018: Upon further reflection, it seems that the tetramutation construct described above lacks validity because during gamete maturation it falls apart into two bi-mutations, both of which cannot contribute to the same zygote. The bi-mutation is stable, however, because of the intervening translocated DNA segment. It is harder to see how a complex adaptation like altruism could evolve out of nothing but mono-mutations and bi-mutations, but that does not mean the theory put forward in this post is necessarily wrong. One must not argue from lack of imagination. It is an interesting question, actually, what is the minimum set of all mutation types necessary to account for all known adaptations.

8-27-2019: In my ignorance, I have undersold the bi-mutation idea. A very far-reaching change to the genetic information can occur during crossing-over that is not at all subtle and is termed unequal crossing-over. This form of the process arises because of inaccuracies, sometimes major, in the initial alignment of the homologous chromosomes prior to crossing-over. When the process is finished, one chromosome has been shortened and the other has been lengthened, with gene duplication. This is the major source of gene duplication, which, in turn, is a major source of junk DNA, the part that is classified as broken genes. Two questions come to mind. The first is, are anatomical features such as jaw length and axon targets somehow controlled by variations in gene dose? The second, which is a tangent, is, are broken genes really broken or just temporarily switched off by genetic drift at some mutational hot spot in the recognition site of some transcription factor? The analogy here is to a generator in a power plant that has been placed in stand-down mode because of a temporary decrease in the demand for electrical power.

Sunday, December 17, 2017

#34. Emotions [evolutionary psychology, genetics, neuroscience]

EP    NE    GE
Red, theory; black, fact.

12-17-2017: In previous posts, I theorized that humans, along with all other sexually-reproducing species, have a long-range guidance system that I called proxy natural selection, or preferably, post-zygotic gamete selection (PGS), that is basically a fast form of evolution in which individual cells, the gametes, are the units of selection, not individuals. Selection is conjectured to happen post-zygotically (i.e., sometime after the beginning of development, or even in adulthood) but is retroactive to the egg and sperm that came together to create the individual. Each gamete is potentially unique because of the crossing-over genetic rearrangements that happen during its maturation. This theory explains the biological purpose of this further layer of uniqueness beyond that due to the sexual mixing of chromosomes, which would otherwise appear to be redundant.

Our emotions are conjectured to be programmed by species-replacement group selection and to serve as proxies for increases and decreases in the fitness of our entire species.

A further correlate of an emotion beyond the cognitive and autonomic-nervous-system components would be the neurohumoral component, expressed as chemical releasing and inhibiting factors that enter the general circulation via the portal vessels of the hypothalamus, blood vessels which are conventionally described as affecting only the anterior pituitary gland. These factors are theorized to reach the stem-like cells that mature into egg and sperm, where they set reversible epigenetic controls on the level of crossing-over that will occur during differentiation. Large amounts of crossing-over are viewed as retroactively penalizing the gametes leading to the individual by obfuscating or overwriting with noise specifically the genetic uniqueness of said original gametes. In contrast, low levels of further crossing-over reward the original gametes with high penetrance into the next generation. Here, I believe you have all the essential ingredients of classical natural selection, and all the potential, in a process that solves problems on an historical timescale.

Crossing-over happens only between homologous chromosomes, which are the paternal and maternal copies of the same chromosome. Human cells have 46 chromosomes because they have 23 pairs of homologous chromosomes. The homologous-chromosome-specificity of crossing-over suggests that the grand optimization problem that is human evolution has been broken down into 23 smaller sub-problems for the needs of the PGS process, each of which can be solved independently, without interactions with any of the other 22, and which involves a 23-fold reduction in the number of variables that must be simultaneously optimized. In computing, this problem-fragmentation strategy greatly increases the speed of optimization. I conjecture that it is one of the features that makes PGS faster than classical natural selection.

However, we now need 23 independent neurohumoral factors descending in the bloodstream from brain to testis or (fetal) ovary, each capable of setting the crossing-over propensity of one specific pair of homologous chromosomes. Each one will require its own specific receptor on the surface of the target oogonia or spermatogonia. Check this out in the literature, and you will already find a strange diversity of cell-surface receptors on the spermatogonia. (I haven't looked at oogonia yet.&&) I predict that the number of such receptors known to science will increase to at least 23. None of this is Lamarkism, because nervous-system control would be over the standard deviation of behavioral traits, not their averages.

1-09-2018: Naively, this theory also appears to require 23 second messengers to transfer the signals from cell surface to nucleus, which sounds excessive. Perhaps the second messengers form a combinatorial code, which would reduce the number required by humans to log2 (23) = 4.52, or 5 in round numbers. This is much better. Exactly five second-messenger systems are known, these being based on: cyclic AMP, inositol triphosphate, cyclic GMP, arachidonic acid, and small GTPases (e.g., ras). However, many mammalian species have many more than the 32 chromosome pairs needed to saturate a 5-bit address space.

1-10-2018: If we expand the above list of second messengers with the addition of the calcium/calmodulin complex, the address space expands to 64 pairs of homologous chromosomes, for a total ploidy of 128. This seems sufficient to accommodate all the mammals. Thus, a combinatorial second-messenger code representable as a five- or six-bit binary integer in most organisms would control the deposition of the epigenetic marks controlling crossing-over propensity.

If the above code works for transcription as well as epigenetic modification, then applying whatever stimuli it takes to produce a definite combinatorial second-messenger state inside the cell will activate one specific chromosome for transcription, so that the progeny of the affected cell will develop into whatever that chromosome specifies, be it an organ, a system, or something else. And there you may have the long-sought key to programming stem cells. You're welcome.

Each pair of homologous chromosomes may correspond to what in an earlier post was called a "PNS focus." The requirement that the evolution of each chromosome contribute independently to the total increase in fitness suggests that a chromosome specifies a system, like the nervous system or the digestive system. We seem to have only 11 systems, not 23, but more may be defined in the future.

A related concept is that a chromosome specifies an ancestral, generic cell type, like glial cells (4 subtypes known) or muscle cells (3 subtypes known). The great diversity of the neurons suggest that they must be reclassified into multiple basic types, perhaps along the lines suggested by the functional classification of the cranial nerves: general somatic, general visceral, and special somatic (i.e., specific senses).

1-09-2018: A third concept for function assignment to homologous pairs of chromosomes postulates a hypothetical maximally divided genome in which each cell type has its own chromosome pair, a state conjectured to seldom occur in nature. Co-evolution of clusters of cell types (e.g., neurons and glia; bone and cartilage) would create selection pressure for the underlying cell-type-specific chromosomes to become covalently linked into the larger chromosomes that we see in the actual karyotypes. Thus, each observed homologous pair would correspond to a few cell types that are currently co-evolving, which seems to return us to the system or organ concept. 

01-08-2019: The system specified by a chromosome may be called a cooperation system, and these may be organized in a hierarchy, following the general principles of spatial organization outlined in my post: "The Pictures in Your Head.Chromosomes activated earlier in development will specify system-like entities and those activated late in development will specify organ-like entities. Only the first-activated chromosome will apply to the entire organism.

Humans depend on complex social structures for their survival, and this comes out of our individual behavioral tendencies. Probably, most PGS adaptations to environmental fluctuations involve modifying these structures, which would come out of subtle modifications of individual behaviors. I think I am just repeating E.O. Wilson here. Our hard-wired species-fitness definitions would give rise to the primary emotions, perhaps in the hypothalamus or limbic system, by connecting specific stimuli to primary emotions in the manner of an if-then rule. 

Further out on the cortex, the specific stimuli being connected would get progressively more complex and learning-dependent, and progressively less concerned with the "what" of behavior (i.e., our species-specific taxes) and more with the "how" of behavior. In "how" mode, the complex stimuli become more like signposts to be consulted on a journey. PGS adaptations of our behavior would affect the hardwired aspects of this hypothetical transition zone. The primary emotions would then be like the highest hierarchical level of our motor program, or like the least-indented instructions of a conventional high-level computer program.

I conjecture that religion is important because it goes straight for this highest level. We all know that religion is kind of an emotional business, what with the organ music and the stained glass and all such as that, and this is why. I therefore conjecture that words spoken often from the pulpit, such as God, sin, forgiveness, devil, angel, soul, salvation, etc., all enclose a secret that writers such as Dawkins do not grasp: the emotions are the message. To illustrate this, let us attempt an emotional definition of the master symbol, "God."

God: feeling loved and secure to the point of invulnerability; feeling small in an agreeable way, as in the presence of mountains; feeling brotherly/sisterly towards one's fellow humans; blossoming in confidence into one's full potential; fearing nothing.

Perhaps that's enough to give the general idea. No doubt a whole dictionary could be compiled along these lines. When the priest strings these emotion-words together, he creates an experience for the congregation that could fairly be called a form letter from "God," assuming that the word "God" points to the PGS process itself. The job of the priest is to help the congregation relate on a deep level to the sacred texts and to see/feel how they apply to the challenges of the here and now.

7-05-2018: Another term for PGS would be "Yahwetion," from "Yahweh," the conventional modern spelling of the name of the god of ancient Israel, and the "tion" ending indicating a process, like evolution. This neologism advantageously steers people away from category errors like attempting to worship it, or appease it, or what have you.

The conventionally religious will complain that this would make prayer to God impossible, but not if prayer itself is re conceived as "auto socialization," following the educational theory of prayer. Then prayer becomes a fantasy conversation with anyone, living or dead, that you would like to have as a mentor, if it were possible.

Monday, April 3, 2017

#27. Why Organized Religion? Theory Two [evolutionary psychology]

Red, theory; black, fact.

My last post about proxy natural selection (PNS) has directed me to emphasize emotion more in seeking explanations for human behavior. I now think of emotions as an "endophenotype," to use a term from functional magnetic resonance imaging, that provides a useful stepping stone from evolutionary arguments to explanations of our daily lives. I recently applied this insight to obtaining a second explanation of religion, alternative or parallel to the first one that I give in a previous post.

What is the mood or feel as you enter a place of worship and participate in the ceremonies conducted there? More than anything else, the mood is one of great reverence, as though one is in the presence of the world's most powerful king. Kings are supposed to "represent their race." However, I want to translate that statement into a sociobiological function assignment. My discussion "Proxy Natural Selection from the Inside" suggests a problem: if the emotional outlines of people's behavior is being partly randomized in each generation by recombination-type mutations, a consistent moral code seems impossible if we assume that morality comes mostly from peoples' inborn patterns of emotional reactivity, that is, the sum total of everyones' betes noir. The purpose of a king may be to find or at least coincide with societies' moral center of gravity, around which a formal, if temporary, moral code can be constructed. In a complex society, everyone must be "on the same page" for efficient interaction. 

The same problem no doubt recurs each time organisms come together to form a colony, or super-organism: the conflict between the need of a colony for coordination of colonists and the need of evolution for random variability. Such variability will inevitably affect the formulation and interpretation of the coordinating messages that the colonists exchange, like all their other inborn characteristics. 

Kingship comes the corrupting influence of personal power, leading to destructive, tyrannical governments. Replacing a real king with a pretend-king named "God" would seem to be the solution that accounts for organized religion, but then one loses all flexibility, the flexibility that goes with having a flesh-and-blood king who can change his predecessor's laws based on current popular sentiment.

However, human nature may well have a core-and-shell structure, with an "unchanging" core surrounded by a slowly changing shell. The former would be the species-specific objective function previously alluded to in post #16, and produced by species-replacement group selection within the genus, and the latter would be due to PNS, and would represent the stratagems hit upon by our ancestors to meet the demands of the objective function in our time and place. This shell part may account for cultural differences between countries. The core may be implemented in the hypothalamus of the brain, whereas the shell may be implemented in the limbic system. The core, being unchanging, could be taught by organized religion, whereas the shell could be codified by the more flexible institution of government. Though the core is unchanging overall, specific individuals will harbor variations in it due to point mutations (not part of PNS), necessitating the standardizing role of religion. Synaptic plasticity would then be used to cancel the point-mutational variation in the objective function.

This core  consists of four pillars, or themes: genetic diversity, memetic diversity, altruism, and dispersal. Our energetic investment in obtaining each item is to be optimized. To produce this, the church of my acquaintance is continually emphasizing, respectively, tolerance, creating beautiful things, charity, and justice. It's almost too neat, especially if we adopt the deeply cynical-sounding position that the demand for "justice" only polarizes groups to the point of schism and diaspora.

Monday, February 6, 2017

#23. Proxy Natural Selection: The God-shaped Gap at the Heart of Biology [genetics, evolution]

EV    GE    
Red, theory; black, fact.

2-06-2017
As promised, here is my detailed and hypothetical description of the entity responsible for compensating for the fact that our microbial, insect, and rodent competitors evolve much faster than we do because of their shorter generation times. In these pages, I have been variously calling this entity the intermind, the collective unconscious, the mover of the zeitgeist, and the real, investigable system that the word "God" points to. I here recant my former belief that epigenetic marks are likely to be the basis of an information storage system sufficient to support an independent evolution-like process. I will assume that the new system, "proxy natural selection" (PNS) is DNA-based.

11-20-2017
The acronym PNS is liable to be confused with "peripheral nervous system," so a better acronym would be "PGS," meaning "post-zygotic gamete selection."

2-06-2017
First, a refresher on how standard natural selection works. DNA undergoes point mutations (I will deal with the other main type of mutation later) that add diversity to the genome. The developmental process translates the various genotypes into a somewhat diverse set of phenotypes. Existential selection then ensues from the interaction of these phenotypes with the environment, made chronically stringent by population pressure. Differential reproduction of phenotypes then occurs, leading to changes in gene frequencies in the population gene pool. Such changes are the essence of evolution.

PNS assumes that the genome contains special if-then rules, perhaps implemented as cis-control-element/structural gene partnerships, that collectively simulate the presence of an objective function that dictates the desiderata of survival and replaces or stands in for existential selection. A given objective function is species-specific but has a generic resemblance across the species of a genus. The genus-averaged objective function evolves by species-replacement group selection, and can thus theoretically produce altruism between individuals. The if-then rules instruct the wiring of the hypothalamus during development, which thereby comes to dictate the organism's likes and dislikes in a way leading to species survival as well as (usually) individual survival. Routinely, however, some specific individuals end up sacrificed for the benefit of the species.

Here is how PNS may work. Crossing-over mutations during meiosis to produce sperm increase the diversity of the recombinotypes making up the sperm population. During subsequent fertilization and brain development, each recombinotype instructs a particular behavioral temperament, or idiosyncratotype. Temperament is assumed to be a set of if-then rules connecting certain experiences with the triggering of specific emotions. An emotion is a high-level, but in some ways stereotyped, motor command, the details of which are to be fleshed out during conscious planning before anything emerges as overt behavior. Each idiosyncratotype interacts with the environment and the result is proxy-evaluated by the hypothalamus to produce a proxy-fitness (p-fitness) measurement. The measurement is translated into blood-borne factors that travel from the brain to the gonads where they activate cell-surface receptors on the spermatogonia. Good p-fitness results in the recombination hot spots of the spermatogonia being stabilized, whereas poor p-fitness results in their further destabilization. 

Thus, good p-fitness leads to good penetrance of the paternal recombinotype into viable sperm, whereas poor p-fitness leads to poor penetrance, because of many further crossing-over events. Changes in hotspot activity could possibly be due to changes in cytosine methylation status. The result is within-lifetime changes in idiosyncratotype frequencies in the population, leading to changes in the gross behavior of the population in a way that favors species survival in the face of environmental fluctuations on an oligogenerational timescale. On such a timescale, neither standard natural selection nor synapse-based learning systems are serviceable.

2-07-2017
The female version of crossing over may set up a slow, random process of recombination that works in the background to gradually erase any improbable statistical distribution of recombinotypes that is not being actively maintained by PNS.

7-29-2017
Here is a better theory of female PNS. First, we need a definition. PNS focus: a function that is the target of most PNS. Thus, in trees, the PNS focus is bio elaboration of natural pesticides. In human males, the PNS focus is brain development and the broad outlines of emotional reactivity, and thus behavior. In human females, the PNS focus is the digestive process. The effectiveness of the latter could be evaluated while the female fetus is still in the womb, when the eggs are developing. The proxy fitness measure would be how well nourished the fetus is, which requires no sensory experience. This explains the developmental timing difference between oogenesis and spermatogenesis. Digestion would be fine tuned by the females for whatever types of food happen to be available in a given time and place.

8-18-2017
Experimental evidence for my proposed recombination mechanism of proxy natural selection has been available since 2011, as follows:

Stress-induced recombination and the mechanism of evolvability
by Weihao Zhong; Nicholas K. Priest
Behavioral Ecology and Sociobiology, 03/2011, Volume 65, Issue 3

permalink:

Abstract:
"The concept of evolvability is controversial. To some, it is simply a measure of the standing genetic variation in a population and can be captured by the narrow-sense heritability (h2). To others, evolvability refers to the capacity to generate heritable phenotypic variation. Many scientists, including Darwin, have argued that environmental variation can generate heritable phenotypic variation. However, their theories have been difficult to test.
 Recent theory on the evolution of sex and recombination provides a much simpler framework for evaluating evolvability. It shows that modifiers of recombination can increase in prevalence whenever low fitness individuals produce proportionately more recombinant offspring. Because recombination can generate heritable variation, stress-induced recombination might be a plausible mechanism of evolvability if populations exhibit a negative relationship between fitness and recombination. Here we use the fruit fly, Drosophila melanogaster, to test for this relationship.
We exposed females to mating stress, heat shock or cold shock and measured the temporary changes that occurred in reproductive output and the rate of chromosomal recombination. We found that each stress treatment increased the rate of recombination and that heat shock, but not mating stress or cold shock, generated a negative relationship between reproductive output and recombination rate. The negative relationship was absent in the low-stress controls, which suggests that fitness and recombination may only be associated under stressful conditions. Taken together, these findings suggest that stress-induced recombination might be a mechanism of evolvability."

However, my theory also has a macro aspect, namely that the definition of what constitutes "stress," in terms of neuron interconnections or chemical signaling pathways, itself  evolves, by species-replacement group selection. Support for that idea is the next thing I must search for in the literature. &&

Wednesday, September 21, 2016

#16. The Intermind, Engine of History? [evolutionary psychology]

Red, theory; black, fact.

9-21-2016
This post is a further development of the ideas in the post, "What is intelligence? DNA as knowledge base." It was originally published 9-21-2016 and extensively edited 10-09-2016 with references added 10-11-2016 and 10-30-2016. Last modified: 10-30-2016.

In "AviApics 101" and "The Insurance of the Heart," I seem to be venturing into human sociobiology, which one early critic called "An outbreak of neatness." With the momentum left over from "Insurance," I felt up for a complete human sociobiological theory, to be created from the two posts mentioned.

However, what I wrote about the "genetic intelligence" suggests that this intelligence constructs our sociobiology in an ad hoc fashion, by rearranging a knowledge base, or construction kit, of "rules of conduct" into algorithm-like assemblages. This rearrangement is (See Deprecated, Part 7) blindingly fast by the standards of classical Darwinian evolution, which only provides the construction kit itself, and presumably some further, special rules equivalent to a definition of an objective function to be optimized. The ordinary rules translate experiences into the priming of certain emotions, not the emotions themselves, 

Thus, my two sociobiological posts are best read as case studies of the products of the genetic intelligence. I have named this part the intermind, because it is intermediate in speed between classical evolution and learning by operant conditioning. (All three depend on trial-and error.) The name is also appropriate in that the intermind is a distributed intelligence, acting over continental, or a least national, areas. If we want neatness, we must focus on its objective function, which is simply whatever produces survival. It will be explicitly encoded into the genes specifying the intermind, (For more on multi-tier, biological control systems with division of labor according to time scale, see "Sociobiology: the New Synthesis," E. O. Wilson, 1975 & 2000, chapter 7.)

Let us assume that the intermind accounts for evil, and that this is because it is only concerned with survival of the entire species and not with the welfare of individuals. Therefore, it will have been created by group selection of species. (Higher taxonomic units such as genus or family will scarcely evolve because the units that must die out to permit this are unlikely to do so, because they comprise relatively great genetic and geographical diversity.* However, we can expect adaptations that facilitate speciation. Imprinted genes may be one such adaptation, which might enforce species barriers by a lock-and-key mechanism that kills the embryo if any imprinted gene is present in either two or zero active copies.) Species group selection need act only on the objective function used by epigenetic trial-and-error processes.

In these Oncelerian times, we know very well that species survival is imperiled by loss of range and by loss of genetic diversity. Thus, the objective function will tend to produce range expansion and optimization of genetic diversity. My post "The Insurance of the Heart" concluded with a discussion of "preventative evolution," which was all about increasing genetic diversity. My post "AviApics 101" was all about placing population density under a rigid, negative feedback control, which would force excess population to migrate to less-populated areas, thereby expanding range. Here we see how my case studies support the existence of an intermind with an objective  function as described above.

However, all this is insufficient to explain the tremendous cultural creativity of humans, starting at the end of the last ice age with cave paintings, followed shortly thereafter by the momentous invention of agriculture. The hardships of the ice age must have selected genes for a third, novel component, or pillar, of the species objective function, namely optimization of memetic diversity. Controlled diversification of the species memeplex may have been the starting point for cultural creativity and the invention of all kinds of aids to survival. Art forms may represent the sensor of a feedback servomechanism by which a society measures its own memeplex diversity, measurement being necessary to control.

A plausible reason for evolving an intermind is that it permits larger body size, which leads to more internal degrees of freedom and therefore access to previously impossible adaptations. For example, eukaryotes can phagocytose their food; prokaryotes cannot. However, larger body size comes at the expense of longer generation time, which reduces evolvability. A band of high frequencies in the spectrum of environmental fluctuations therefore develops where the large organism has relinquished evolvability, opening it to being out competed by its smaller rivals. 

The intermind is a proxy for classical evolution that fills the gap, but it needs an objective function to provide it with its ultimate gold standard of goodness of adaptations. Species-replacement group selection makes sure the objective function is close to optimal. This group selection process takes place at enormously lower frequencies than those the intermind is adapting to, because if the timescales were  too similar, chaos would result. For example, in model predictive control, the model is updated on a much longer cycle than are the predictions derived from it.

12-25-2016
Today, when I was checking to see if I was using the word "cathexis" correctly (I wasn't), I discovered the Freudian term "collective unconscious," which sounds close to my "intermind" concept.

* 3-12-2018
I now question this argument. Why can't there be as many kinds of group selection as taxonomic levels? Admittedly, the higher-level processes would be mind-boggling in their slowness, but in evolution, there are no deadlines.

Wednesday, May 25, 2016

#1. Intro [evolutionary psychology, evolution]

This is the sort of thing I write:

EP       EV      
Red, theory; black, fact.


EP
Religion is the last proto-science (e.g., alchemy, astrology). 
(Parts cut to Deprecated page, Part 2.)

***
EV
The eukaryotic cell arose from a clonal array of prokaryotes that selectively lost some of its internal partition walls while following the colony path to complexity. The remaining partitions gave rise to the internal membrane systems of present-day eukaryotes. Those prokaryote colonists specializing in chemiosmotic processes such as oxidative phosphorylation and photosynthesis could not lose any of their delimiting walls because of the need to maintain concentration gradients, so they remain bacterium-like in morphology to this day. This is an alternative to the phagocytotic theory of the origin of mitochondria and chloroplasts. Modern blue-green algae genetically resemble the DNA in chloroplasts, and modern aerobic bacteria have genetic resemblances to the DNA in mitochondria, but this is not necessarily differential support for the phagocytosis theory. The resemblances can be accounted for by convergent evolution or by the existence of an ancestor common to the modern organisms and the ancient colony formers I suppose here.

11-15-2017
These prokaryote colonies would have originally reproduced by sporulation, not mitosis, which would have come later. The "spores" would be actively-metabolizing prokaryotes and before growing into further colonies, would be subject to natural selection. In the spore phase, the rapid evolvability of typical prokaryotes would have been recovered, allowing the formation of large, slow-growing colonies without sacrifice of the high evolvability of the original solitary prokaryotes. Modern-day eukaryotes often secrete tiny bodies called exosomes containing all the macromolecules of life. Exosomes may be the evolutionary vestige of the sporulation phase of the original eukaryotes.