Showing posts with label neural mechanisms. Show all posts
Showing posts with label neural mechanisms. Show all posts

Wednesday, September 21, 2016

#16. The Intermind, Engine of History? [evolutionary psychology]

Red, theory; black, fact.

9-21-2016
This post is a further development of the ideas in the post, "What is intelligence? DNA as knowledge base." It was originally published 9-21-2016 and extensively edited 10-09-2016 with references added 10-11-2016 and 10-30-2016. Last modified: 10-30-2016.

In "AviApics 101" and "The Insurance of the Heart," I seem to be venturing into human sociobiology, which one early critic called "An outbreak of neatness." With the momentum left over from "Insurance," I felt up for a complete human sociobiological theory, to be created from the two posts mentioned.

However, what I wrote about the "genetic intelligence" suggests that this intelligence constructs our sociobiology in an ad hoc fashion, by rearranging a knowledge base, or construction kit, of "rules of conduct" into algorithm-like assemblages. This rearrangement is (See Deprecated, Part 7) blindingly fast by the standards of classical Darwinian evolution, which only provides the construction kit itself, and presumably some further, special rules equivalent to a definition of an objective function to be optimized. The ordinary rules translate experiences into the priming of certain emotions, not the emotions themselves, 

Thus, my two sociobiological posts are best read as case studies of the products of the genetic intelligence. I have named this part the intermind, because it is intermediate in speed between classical evolution and learning by operant conditioning. (All three depend on trial-and error.) The name is also appropriate in that the intermind is a distributed intelligence, acting over continental, or a least national, areas. If we want neatness, we must focus on its objective function, which is simply whatever produces survival. It will be explicitly encoded into the genes specifying the intermind, (For more on multi-tier, biological control systems with division of labor according to time scale, see "Sociobiology: the New Synthesis," E. O. Wilson, 1975 & 2000, chapter 7.)

Let us assume that the intermind accounts for evil, and that this is because it is only concerned with survival of the entire species and not with the welfare of individuals. Therefore, it will have been created by group selection of species. (Higher taxonomic units such as genus or family will scarcely evolve because the units that must die out to permit this are unlikely to do so, because they comprise relatively great genetic and geographical diversity.* However, we can expect adaptations that facilitate speciation. Imprinted genes may be one such adaptation, which might enforce species barriers by a lock-and-key mechanism that kills the embryo if any imprinted gene is present in either two or zero active copies.) Species group selection need act only on the objective function used by epigenetic trial-and-error processes.

In these Oncelerian times, we know very well that species survival is imperiled by loss of range and by loss of genetic diversity. Thus, the objective function will tend to produce range expansion and optimization of genetic diversity. My post "The Insurance of the Heart" concluded with a discussion of "preventative evolution," which was all about increasing genetic diversity. My post "AviApics 101" was all about placing population density under a rigid, negative feedback control, which would force excess population to migrate to less-populated areas, thereby expanding range. Here we see how my case studies support the existence of an intermind with an objective  function as described above.

However, all this is insufficient to explain the tremendous cultural creativity of humans, starting at the end of the last ice age with cave paintings, followed shortly thereafter by the momentous invention of agriculture. The hardships of the ice age must have selected genes for a third, novel component, or pillar, of the species objective function, namely optimization of memetic diversity. Controlled diversification of the species memeplex may have been the starting point for cultural creativity and the invention of all kinds of aids to survival. Art forms may represent the sensor of a feedback servomechanism by which a society measures its own memeplex diversity, measurement being necessary to control.

A plausible reason for evolving an intermind is that it permits larger body size, which leads to more internal degrees of freedom and therefore access to previously impossible adaptations. For example, eukaryotes can phagocytose their food; prokaryotes cannot. However, larger body size comes at the expense of longer generation time, which reduces evolvability. A band of high frequencies in the spectrum of environmental fluctuations therefore develops where the large organism has relinquished evolvability, opening it to being out competed by its smaller rivals. 

The intermind is a proxy for classical evolution that fills the gap, but it needs an objective function to provide it with its ultimate gold standard of goodness of adaptations. Species-replacement group selection makes sure the objective function is close to optimal. This group selection process takes place at enormously lower frequencies than those the intermind is adapting to, because if the timescales were  too similar, chaos would result. For example, in model predictive control, the model is updated on a much longer cycle than are the predictions derived from it.

12-25-2016
Today, when I was checking to see if I was using the word "cathexis" correctly (I wasn't), I discovered the Freudian term "collective unconscious," which sounds close to my "intermind" concept.

* 3-12-2018
I now question this argument. Why can't there be as many kinds of group selection as taxonomic levels? Admittedly, the higher-level processes would be mind-boggling in their slowness, but in evolution, there are no deadlines.

Sunday, August 7, 2016

#12. The Neural Code, Part I: the Hippocampus [neuroscience, engineering]

EN    NE    
Red, theory; black, fact.

"Context information" is often invoked in neuroscience theory as an address for storing more specific data in memory, such as whatever climbing fibers carry into the cerebellar cortex (Marr theory), but what exactly is context, as a practical matter?

First, it must change on a much longer timescale than whatever it addresses. Second, it must also be accessible to a moving organism that follows habitual, repetitive pathways in patrolling its territory. Consideration of the mainstream theory that the hippocampus prepares a cognitive map of the organism's spatial environment suggests that context is a set of landmarks. It seems that a landmark will be any stimulus that appears repetitively. Since only rhythmically repeating functions have a classical discrete-frequency Fourier transform, the attempt to calculate such a transform could be considered a filter for extracting rhythmic signals from the sensory input. 

However, this is not enough for a landmark extractor because landmark signals are only repetitive, not rhythmic. Let us suppose, however, that variations in the intervals between arrivals at a given landmark are due entirely to programmed, adaptive variations in the overall tempo of the organism's behavior. A tempo increase will upscale all incoming frequencies by the same factor, and a tempo decrease will downscale them all by the same factor. Since these variations originate within the organism, the organism could send a "tempo efference copy" to the neuronal device that calculates the discrete Fourier transform, to slide the frequency axis left or right to compensate for tempo variations. 

Thus, the same landmark will always transform to the same set of activated spots in the frequency-amplitude-phase volume. I conjecture that the hippocampus calculates a discrete-frequency Fourier transform of all incoming sensory data, with lowest frequency represented ventrally and highest dorsally, and a with a linear temporal spectrum represented between. 

The negative feedback device that compensates tempo variations would be the loop through medial septum. The septum is the central hub of the network in which the EEG theta rhythm can be detected. This rhythm may be a central clock of unvarying frequency that serves as a reference for measuring tempo variations, possibly by a beat-frequency principle. 

The hippocampus could calculate the Fourier transform by exploiting the mathematical fact that a sinusoidal function differentiated four times in succession gives exactly the starting function, if its amplitude and frequency are both numerically equal to one. This could be done by the five-synapse loop from dentate gyrus to hippocampal CA3 to hippocampal CA1 to subiculum to entorhinal cortex, and back to dentate gyrus. The dentate gyrus looks anatomically unlike the others and may be the input site where amplitude standardization operations are performed, while the other four stages would be the actual differentiators. 

Differentiation would occur by the mechanism of a parallel shunt pathway through slowly-responding inhibitory interneurons, known to be present throughout the hippocampus. The other two spatial dimensions of the hippocampus would represent frequency and amplitude by setting up gradients in the gain of the differentiators. A given spot in the array maps the input function to itself only for one particular combination of frequency and transformed (i.e., output) amplitude. 

The self-mapping sets up a reverberation around the loop that makes the spot stand out functionally. All the concurrently active spots would constitute the context. This context could in principle reach the entire cerebral cortex via the fimbria fornix, mammillary bodies, and tuberomamillary nucleus of the hypothalamus, the latter being histaminergic.

The cortex may contain a novelty-detection function, source of the well-documented mismatch negativity found in oddball evoked-potential experiments. A stimulus found to be novel would go into a short term memory store in cortex. If a crisis develops while it is there, it is changed into a flash memory and wired up to the amygdala, which mediates visceral fear responses. In this way, a conditioned fear stimulus could be created. If a reward registers while the stimulus is in short term memory, it could be converted to a conditioned appetitive stimulus by a similar mechanism.

 I conjecture that all a person's declarative and episodic memories together are nothing more nor less than those that confer conditioned status on particular stimuli.

To become such a memory, a stimulus must first be found to be novel, and this is much less likely in the absence of a context signal; to put it another way, it is the combination of the context signal and the sensory stimulus that is found to be novel. Absent the context, and almost no simple stimulus will be novel. This may be the reason why at least one hippocampus must be functioning if declarative or episodic memories are to be formed.

Wednesday, August 3, 2016

#11. Revised Motor Scheme [neuroscience]


How skilled behavior may be generated, on the assumption that it is acquired by an experimentation-like process.

Red, theory; black, fact.

Please find above a revised version of the motor control theory presented in the last blog. The revision was necessitated by the fact that there is no logical reason why a motor command cannot go to both sides of the body at once to produce a mid line-symmetrical movement. The prediction is that mid-line-symmetrical movements are acquired one side at a time whenever the controlling corticofugal pathway allows the two sides to move independently.

Saturday, July 30, 2016

#10. The Two–test-tube Experiment: Part II [neuroscience]

Red, theory; black, fact.

At this point we have a problem. The experimenting-brain theory predicts zero hard-wired asymmetries between the hemispheres. However, the accepted theory of hemispheric dominance postulates that this arrangement allows us to do two things at once, one task with the left hemisphere and the other task with the right. The accepted theory is basically a parsimony argument. However, this argument predicts huge differences between the hemispheres, not the subtle ones actually found.

My solution is that hard-wired hemispheric dominance must be seen as an imperfection of symmetry in the framework of the experimenting brain caused by the human brain being still in the process of evolving, combined with the hypothesis that brain-expanding mutations individually produce small and asymmetric expansions. (See Post 45.) Our left-hemispheric speech apparatus is the most asymmetric part of our brain and these ideas predict that we are due for another mutation that will expand the right side, thereby matching up the two sides, resulting in an improvement in the efficiency of operant conditioning of speech behavior.

These ideas also explain why speech defects such as lisping and stuttering are so common and slow to resolve, even in children, who are supposed to be geniuses at speech acquisition.
This is how the brain would have to work if fragments of skilled behaviors are randomly stored in memory on the left or right side, reflecting the possibility that the two hemispheres play experiment versus control, respectively, during learning.
The illustration shows the theory of motor control I was driven to by the implications of the theory of the dichotomously experimenting brain already outlined. It shows how hemispheric dominance can be reversed independently of the side of the body that should perform the movement specified by the applicable rule of conduct in the controlling hemisphere. The triangular device is a summer that converges the motor outputs of both hemispheres into a common output stream that is subsequently gated into the appropriate side of the body. This arrangement cannot create contention because at any given time, only one hemisphere is active. Anatomically, and from stroke studies, it certainly appears that the outputs of the hemispheres must be crossed, with the left hemisphere only controlling the right body and vice-versa.

However, my theory predicts that in healthy individuals, either hemisphere can control either side of the body, and the laterality of control can switch freely and rapidly during skilled performance so as to always use the best rule of conduct at any given time, regardless of the hemisphere in which it was originally created during REM sleep.

The first bit is calculated and stored in the basal ganglia. It would be output from the reticular substantia nigra (SNr) and gate sensory input to thalamus to favor one hemisphere or the other, by means of actions at the reticular thalamus and intermediate grey of the superior colliculus. The second bit would be stored in the cerebellar hemispheres and gate motor output to one side of the body or the other, at the red nucleus. Conceivably, the two parts of the red nucleus, the parvocellular and the magnocellular, correspond to the adder and switch, respectively, that are shown in the illustration.

Under these assumptions, the corpus callosum is needed only to distribute priming signals from the motor/premotor cortices to activate the rule that will be next to fire, without regard for which side that rule happens to be on. The callosum would never be required to carry signals forward from sensory to motor areas. I see that as the time-critical step, and it would never depend on getting signals through the corpus callosum, which is considered to be a signaling bottleneck.

How would the basal ganglia identify the "best" rule of conduct in a given context? I see the dopaminergic compact substantia nigra (SNc) as the most likely place for a hemisphere-specific "goodness" value to be calculated after each rule firing, using hypothalamic servo-error signals processed through the habenula as the main input for this. The half of the SNc located in the inactive hemisphere would be shut down by inhibitory GABAergic inputs from the adjacent SNr. The dopaminergic nigrostriatal projection would permanently potentiate simultaneously-active corticostriatal inputs (carrying context information) to medium spiny neurons (MSNs) of enkephalin type via a crossed projection, and to MSNs of substance-P type via uncrossed projections. The former MSN type innervates the external globus pallius (GPe), and the latter type innervates the SNr. These latter two nuclei are inhibitory and innervate each other. 

I conjecture that this arrangement sets up a winner-take-all kind of competition between GPe and SNr, with choice of the winner being exquisitely sensitive to small historical differences in dopaminergic tone between hemispheres. The "winner" is the side of the SNr that shuts down sensory input to the hemisphere on that side. The mutually inhibitory arrangement could also plausibly implement hysteresis, which means that once one hemisphere is shut down, it stays shut down without the need for an ongoing signal from the striatum to keep it shut down.

Each time the cerebral cortex outputs a motor command, a copy goes to the subthalamic nucleus (STN) and could plausibly serve as the timing signal for a "refresh" of the hemispheric dominance decision based on the latest context information from cortex. The STN signal presumably removes the hysteresis mentioned above, very temporarily, then lets the system settle down again into possibly a new state.

We now need a system that decides that something is wrong, and that the time to experiment has arrived. This could plausibly be the role of the large, cholinergic inter neurons of the striatum. They have a diverse array of inputs that could potentially signal trouble with the status quo, and could implement a decision to experiment simply by reversing the hemispheric dominance prevailing at the time. Presumably, they would do this by a cholinergic action on the surrounding MSNs of both types.

Finally, there is the second main output of the basal ganglia to consider, the inner pallidal segment (GPi). This structure is well developed in primates such as humans but is rudimentary in rodents and even in the cat, a carnivore. It sends its output forward, to motor thalamus. I conjecture that its role is to organize the brain's knowledge base to resemble block-structured programs. All the instructions in a block would be simultaneously primed by this projection. The block identifier may be some hash of the corticostriatal context information. A small group of cells just outside the striatum called the claustrum seems to have the connections necessary for preparing this hash. Jump rules, that is, rules of conduct for jumping between blocks, would not output motor commands, but block identifiers, which would be maintained online by hysteresis effects in the basal ganglia.

The cortical representation of jump rules would likely be located in medial areas, such as Brodmann 23, 24, 31, and 32. BA23-24 is classed as limbic system, and BA31-32 is situated between this and neocortex. This arrangement suggests that, seen as a computer, the brain is capable of executing programs with three levels of indentation, not counting whatever levels may be encoded as chromatin marks in the serotonergic neurons. Dynamic changes in hemispheric dominance might have to occur independently in neocortex, medial cortex, and limbic system.

Monday, June 27, 2016

#6. Mental Illness as Communication [neuroscience, genetics]

NE     GE     
Red, theory; black, fact.

The effects of most deleterious mutations are compensated by negative feedback processes occurring during development in utero. However, if the population is undergoing intense Darwinian selection, many of these mutations become unmasked and therefore contribute variation for selection. (Jablonka and Lamb, 2005, The MIT Press, "Evolution in Four Dimensions")

However, since most mutations are harmful, a purely random process for producing them, with no pre-screening, is wasteful. Raw selection alone is capable of scrubbing out a mistake that gets as far as being born, at great cost in suffering, only to have, potentially, the very same random mutation happen all over again the very next day, with nothing learnt. Repeat ad infinitum. This is Absurd, and quarrels with the engineer in me, and I like to say that evolution is an engineer. Nowadays, evolution itself is thought to evolve. A simple example of this would be the evolution of DNA repair enzymes, which were game-changers, allowing much longer genes to be transmitted to the next generation, resulting in the emergence of more-complex lifeforms.

An obvious, further improvement would be a screening, or vetting process for genetic variation. Once a bad mutation happens, you mark the offending stretch of DNA epigenetically in all the close relatives of the sufferer, to suppress further mutations there for a few thousand years, until the environment has had time to change significantly.

Obviously, you also want to oppositely mark the sites of beneficial mutations, and even turn them into recombinant hot spots for a few millennia, to keep the party going. Hot spots may even arise randomly and spontaneously, as true, selectable epi-mutations. The downside of all this is that even in a hot spot, most mutations will still be harmful, leading to the possibility of "hitchhiker" genetic diseases that cannot be efficiently selected against because they are sheltered in a hot spot. Cystic fibrosis may be such a disease, and as the hitchhiker mechanism would predict, it is caused by many different mutations, not just one. It would be a syndrome defined by the overlap of a vital structural gene and a hot spot, not by a single DNA mutation. I imagine epigenetic hot spots to be much more extended along the DNA than a classic point mutation.

It is tempting to suppose that the methylation islands found on DNA are these hot spots, but the scanty evidence available so far is that methylation suppresses recombinant hot spots, which are generally defined non-epigenetically, by the base-pair sequence.

The human brain has undergone rapid, recent evolutionary expansion, presumably due to intense selection, presumably unmasking many deleterious mutations affecting brain development that were formerly silent. Since the brain is the organ of behavior, we expect almost all these mutations to indirectly affect behavior for the worse. That explains mental illness, right?

I'm not so sure; mental illnesses are not random, but cluster into definable syndromes. My reading suggests the existence of three such syndromes: schizoid, depressive, and anxious. My theory is that each is defined by a different recombinant hot spot, as in the case of CF, and may even correspond to the three recently-evolved association cortices of the brain, namely parietal, prefrontal, and temporal, respectively. The drama of mental illness would derive from its communication role in warning nearby relatives that they may be harbouring a bad hot spot, causing them to find it and cool it by wholly unconscious processes. Mental illness would then be the push back against the hot spots driving human brain evolution, keeping them in check and deleting them as soon as they are no longer pulling their weight fitness-wise. The variations in the symptoms of mental illness would encode the information necessary to find the particular hot spot afflicting a particular family.

Now all we need is a communication link from brain to gonads. The sperm are produced by two rounds of meiosis and one of mitosis from the stem-like, perpetually self-renewing spermatogonia, that sit just outside the blood-testes barrier and are therefore exposed to blood-borne hormones. These cells are known to have receptors for the hypothalamic hormone orexin A*, as well as many other receptors for signaling molecules that do or could plausibly originate in the brain as does orexin. Some of these receptors are:
  • retinoic acid receptor α
  • glial cell-derived neurotrophic factor (GDNF) receptor
  • CB2 (cannabinoid type 2) receptor
  • p75 (For nerve growth factor, NGF)
  • kisspeptin receptor.

*Gen Comp Endocrinol. 2016 May 9. pii: S0016-6480(16)30127-7. doi: 10.1016/j.ygcen.2016.05.006. [Epub ahead of print] Localization and expression of Orexin A and its receptor in mouse testis during different stages of postnatal development. Joshi D1, Singh SK2.

PS: for brevity, I left out mention of three sub-functions necessary to the pathway: an intracellular gonadal process transducing receptor activation into germ line-heritable epigenetic changes, a process for exaggerating the effects of bad mutations into the development of monsters or behavioral monsters for purposes of communication, and a process of decoding the communication located in the brains of the recipients.

Saturday, June 18, 2016

#5. Why We Dream [neuroscience]

NE
Red, theory; black, fact.

The Melancholy Fields








Something I still remember from Psych 101 is the prof's statement that "operant conditioning" is the basis of all voluntary behavior. The process was discovered in lab animals such as pigeons by B.F. Skinner in the 1950s and can briefly be stated as "If the ends are achieved, the means will be repeated." (Gandhi said something similar about revolutionary governments.)

I Dream of the Gruffalo. Pareidolia as dream imagery.

Let's say The Organism is in a supermarket checkout line and can't get the opposite sides of a plastic grocery bag unstuck from each other no matter how it rubs, blows, stretches, picks at, or pinches the bag. At great length, a rubbing behavior by chance happens near the sweet spot next to the handle, and the bag opens at once. Thereafter, when in the same situation, The Organism goes straight to the sweet spot and rubs, for a great savings in time and aggravation. This is operant conditioning, which is just trial-and-error, like evolution itself, only faster. Notice how it must begin: with trying moves randomly--behavioral mutations. However, the process is not really random like a DNA mutation. The Organism never tries kicking out his foot, for example, when it is the hand that is holding the bag. Clearly, common sense plays a role in getting the bag open, but any STEM-educated person will want to know just what this "common sense" is and how you would program it. Ideally, you want the  creativity and genius of pure randomness, AND the assurance of not doing anything crazy or even lethal just because some random-move generator suggested it. You vet those suggestions.

That, in a nutshell, is dreaming: vetting random moves against our accumulated better judgment to see if they are safe--stocking the brain with pre-vetted random moves for use the next day when stuck. This is why the emotions associated with dreaming are more often unpleasant than pleasant: there are more ways to go wrong than to go right (This is why my illustrations for this post are melancholy and monster-haunted.) The vetting is best done in advance (e.g., while we sleep) because there's no time in the heat of the action the next day, and trial-and-error with certified-safe "random" moves is already time-consuming without having to do the vetting on the spot as well.

Dreams are loosely associated with brain electrical events called "PGO waves," which begin with a burst of action potentials ("nerve impulses") in a few small brainstem neuron clusters, then spread to the visual thalamus, then to the primary visual cortex. I theorize that each PGO wave creates a new random move that is installed by default in memory in cerebral cortex, and is then tested in the inner theater of dreaming to see what the consequences would be. In the event of a disaster foreseen, the move is scrubbed from memory, or better yet, added as a "don't do" to the store of accumulated wisdom. Repeat all night.

If memory is organized like an AI knowledge base, then each random move would actually be a connection from a randomly-selected but known stimulus to a randomly-selected but known response, amounting to adding a novel if-then rule to the knowledge base. Some of the responses in question could be strictly internal to the brain, raising or lowering the firing thresholds of still other rules.

In "Evolution in Four Dimensions" [1st ed.] Jablonka and Lamb make the point that epigenetic, cultural, and symbolic processes can come up with something much better than purely random mutations: variation that has been subjected to a variety of screening processes.

Nightmares involving feelings of dread superimposed on experiencing routine activities may serve to disrupt routine assumptions that are not serving you well (that is, you may be barking up the wrong tree).

Tuesday, May 31, 2016

#3. AviApics 101 [population, engineering, evolutionary psychology]

PO     EN     EP     
Red, theory; black, fact.

Here, I go into detail about the human population controller introduced in the previous post.

I assume that, like everything in the natural (i.e., evolved) world, it is a masterful piece of engineering, as Leonardo Da Vinci declared.

The way to build an ideal controller is the inverse plant method, where the controller contains the mathematical inverse of a mathematical model of the system to be controlled.  To derive the model, you take the Laplace transform of the system's impulse response function. For populations, a suitable impulse would be the instantaneous introduction of the smallest viable breeding population into an ideal habitat.

What happens then is well known, as least in microbial life forms too simple to already have a controller: unrestrained, exponential population growth as per Malthus, with no end in sight.

This exponential curve is then the impulse response function we need, and its Laplace transform is simple: 1/(S - r), where S is complex frequency and r is the Malthusian constant, that is, percent population growth rate per year. The mathematical inverse is even simpler: S - r, which is calculated as set point X minus controlled variable Y. The result is summed with perturbation P and made equal to Y. The result is usually simplified to permit predictions about controller performance, but that is not needed in this discussion.

The control effort is E(S - r), which can be multiplied out as ES - Er. Remember that everything has been Laplace transformed in these expressions, and that ES becomes the time differential of e when transformed back into the real world. Multiplication by a constant such as r stays multiplication, however. Control effort in the real world is then rate of change of e minus r times e. (Lowercase variables are the un-transformed versions.) Since e = x - y, and since x is constant, x becomes zero when differentiated, and drops out of the expression. Control effort is then -dy/dt - er. <Corrected 5 Jun '16.>

I theorize that women calculate -dy/dt, and men calculate er. When they get together, the complete population control effort is exerted, resulting in stability, which the world rewards. However, on average, the men and the women will be pulling in opposite directions exactly 50% of the time, if we model population variation as a sine wave centered on the set point.

A prediction is that women unconsciously react to evidence of increased birth rate or decreased death rate by wanting fewer children. Men react to excess absolute population relative to set point by violence, and to breathing room under the set point by partying.

That negative sign in front of the male contribution was puzzling at first, until I realized that it must derive from the married state itself, and not from the base male response to population error. This could be the origin of statements such as: "Marriage is the exact opposite of the way you think it will be." 

The level of the noise produced so copiously by small children is probably the signal that women unconsciously integrate to estimate birth rate, and the wailing and long faces following a death probably serve the same purpose for estimating death rate, aided by reading the tabloids. [My (married) older brother once showed me the developmental time course of child noise in the air with his hand, and it looked like an EPSP, the response of a neuron to an incoming action potential. The EPSP is the convolution kernel by which a neuron decodes a rate code.] The men have to calculate absolutes, not rates, however. The male proprietary instinct causes them to divvy up the limiting resource for breeding (jobs in our present society) into quanta that can be paired off with people like pairs of beads on adjacent wires of an abacus. Excess people left over at the end of this operation spells trouble. Politicians are right to worry about jobless rates.