Showing posts with label recombination hot-spots. Show all posts
Showing posts with label recombination hot-spots. Show all posts

Sunday, November 18, 2018

#45. The Denervation-supersensitivity Theory of Mental Illness [neuroscience, evolution, genetics]

NE     EV     GE     
Red, theory; black, fact.

People get mental illness but animals seemingly do not, or at least not outside of artificial laboratory models such as the unpredictable, mild-stress rodent model of depression. A simple theory to account for this cites the paleontological fact that the human brain has been expanding at breakneck speed over recent evolutionary time and postulates that this expansion is ongoing at the present time, and that mental illness is the price we are paying for all this brain progress.

In other words, the mentally ill carry the unfavorable mutations that have to be selected out during this progress, and the mutation rate in certain categories of mutation affecting human brain development is elevated in modern humans by some sort of "adaptive" hot-spot system. "Adaptive" is in scare quotes here to indicate that the adaptation inheres in changes in the standard deviation of traits, not the average, and is therefore not Lamarkian.

In brain evolution, the growth changes in the various parts very probably have to be coordinated somehow. I conjecture that there is no master program doing this coordination. Rather, I conceive of the human brain as comprising scores of tissue "parcels," each with its own gene to control the final size that parcel reaches in development. (This idea is consistent with the finding of about 400 genes in humans that participate in establishing body size.) All harmonious symmetry, even left-right symmetry, would have to be painstakingly created by brute-force selection, involving the early deaths of millions of asymmetrical individuals. This idea was outlined in post 10.

Assuming that left and right sides must functionally cooperate to produce a fitness improvement, mutations affecting parcel growth must occur in linked, left-right pairs to avoid irreducible-complexity paradoxes. I have previously conjectured in these pages that the crossing-over phenomenon of egg and sperm maturation serves to create these linked pairs of mutations, where the two mutations are identified with the two ends of the DNA segment that translocates. (See "Can Irreducible Complexity Evolve?")

Most of the evolutionary expansion of the human brain appears to be focused on association cortex, which I conjecture implements if-then rules, like those making up the knowledge bases familiar from the field of artificial intelligence. The "if" part of the rule would be evaluated in post-Rolandic cortex, i.e., in temporal and parietal association cortices, and the "then" part of the rule would be created by the pre-Rolandic association cortex, i.e., the prefrontal cortex. The white matter tracts running forward in the brain would connect the "if" part with the "then" part, and the backward running white-matter tracts would carry priming signals to get other rules ready to "fire" if they are commonly used after the rule in question.

Due to such tight coordination, I would expect that the ideal brain will have a fixed ratio of prefrontal cortex to post-Rolandic association cortex. However, the random nature of the growth-gene bi-mutations (perhaps at mutational hot-spots) permitting human brain evolution will routinely violate this ideal ratio, leading to the creation of individuals having either too much prefrontal cortex or too much temporal/parietal cortex. In the former case, you will have prefrontal cortex starved of sensory input. In the latter case, you will have sensory association cortex starved of priming signals feeding back from motoric areas.

Denervation supersensitivity occurs when the normal nerve supply to a muscle is interrupted, resulting in a rapid overexpression of acetylcholine receptors on the muscle. This can be seen as an attempt to compensate for weak nerve transmission with a tremendous re-amplification of the signal by the muscle. Analogous effects have been found in areas of the cerebral cortex deprived of their normal supply of sensory signals, so the effect seems to be quite general.

In cases of genetically-determined frontal-parietal/temporal imbalance, I conjecture that the input-starved side develops something like denervation supersensitivity, making it prone to autonomous, noise-driven nervous activity.

If the growth excess is in sensory association cortex, this autonomous activity will manifest as hallucinations, resulting in a person with schizophrenia. If the growth excess is in the prefrontal cortex, however, the result of the autonomous activity will be mania or a phobia. Depression may originally have been an adaptation to the presence of a man-eating predator in the neighborhood, but in civilized contexts, it can get activated by the unpredictable (to the sufferer) punishments resulting from manic activity. If the mania is sufficiently mild to co-exist with depression, as in type II bipolar disorder, then the overall effect of the depressive component may be like a band-aid on the mania.

The non-overgrown association cortex might even secondarily develop the opposite of denervation supersensitivity as the result of continual bombardment with autonomous activity from the other side of the Rolandic fissure. This could account for the common observation of hypoprefrontality in cases of schizophrenia.

Monday, July 4, 2016

#7. What is Intelligence? Part I. DNA as Knowledge Base [genetics, engineering]

EN     GE     
Red: theory; black, fact.

I have concluded that the world contains three intelligences: the genetic, the synaptic, and the artificial. The first includes (See Deprecated, Part 10) genetic phenomena and is the scientifically-accessible reality behind the concept of God. The synaptic is the intelligence in your head, and seems to be the hardest to study and the one most in need of elucidation. The artificial is the computer, and because we built it ourselves, we presumably understand it. Thus, it can provide a wealth of insights into the nature of the other two intelligences and a vocabulary for discussing them.

Artificial intelligence systems are classically large knowledge bases (KBs), each animated by a relatively small, general-purpose program, the "inference engine." The knowledge bases are lists of if-then rules. The “if” keyword introduces a logical expression (the condition) that must be true to prevent control from immediately passing to the next rule, and the “then” keyword introduces a block of actions the computer is to take if the condition is true. Classical AI suffers from the problem that as the number of if-then rules increases, operation speed decreases dramatically due to an effect called the combinatorial explosion.

A genome can be compared to a KB in that it contains structural genes and cis-acting control elements.(CCEs). The CCEs trigger the transcription of the structural genes into messenger RNAs in response to environmental factors and these are then translated into proteins that have some effect on cell behavior. The analogy to a list of if-then rules is obvious. A CCE evaluates the “if” condition and the conditionally translated protein enables the “action” taken by the cell if the condition is true.

Note that the structural gene of one rule precedes the CCE of the next rule along the DNA strand. Surely, would this circumstance not also represent information? However, what could it be used for? It could be used to order the rules along the DNA strand in the same sequence as the temporal sequence in which the rules are normally applied, given the current state of the organism’s world. This seems to be a possible solution to the combinatorial explosion problem, leading to much shorter delays on average for the transcriptase complex to arrive where it is needed. I suspect that someday, it will be to this specific arrangement that the word “intelligence” will refer.
The process of putting the rules into such a sequence may involve trial-and-error, with transposon jumping providing the random variation on which selection operates. A variant on this process would involve stabilization by methylation of recombination sites that have recently produced successful results. These results would initially be encoded in the organism's emotions, as a proxy to reproductive success. In this form, the signal can be rapidly amplified by inter individual positive feedback effects. It would then be converted into DNA methylation signals in the germ line. (See my post on mental illness for possible mechanisms.) DNA methylation is known to be able to cool recombination hot spots.

A longer-timescale process involving meiotic crossing-over may create novel rules of conduct by breaking DNA between promoter and structural gene of the same rule, a process analogous to the random-move generation discussed in my post on dreaming. Presumably, the longest-timescale process would be creating individual promoters and structural genes with new capabilities of recognition and effects produced, respectively. This would happen by point mutation and classical selection.
How would the genetic intelligence handle conditional firing probabilities in the medium to low range? This could be done by cross linking nucleosomes via the histone side chains in such a way as to cluster the CCEs of likely-to-fire-next rules near the end of the relevant structural gene, by drawing together points on different loops of DNA. The analogy here would be to a science-fictional “wormhole” from one part of space to another via a higher-dimensional embedding space. In this case, “space” is the one-dimensional DNA sequence with distances measured in kilobases, and the higher-dimensional embedding space is the three-dimensional physical space of the cell nucleus.

The cross linking is presumably created and/or stabilized by the diverse epigenetic marks known to be deposited in chromatin. Most of these marks will certainly change the electric charge and/or the hydrophobicity of amino acid residues on the histone side chains. Charge and hydrophobicity are crucial factors in ionic bonding between proteins. The variety of such changes that are possible.

Mechanistically, there seems to be a great divide between the handling of high and of medium-to-low conditional probabilities. This may correspond with the usual block structure of algorithms, with transfer of control linear and sequential within a block, and by jump instruction between blocks.

Another way of accounting for the diversity of epigenetic marks, mostly due to the diversity of histone marks, is to suppose that they can be paired up into negative-positive, lock-key partnerships, each serving to stabilize by ionic bonding all the wormholes in a subset of the chromatin that deals with a particular function of life. The number of such pairs would equal the number of functions.

Their lock-key specificity would prevent wormholes, or jumps, from forming between different functions, which would cause chaos. If the eukaryotic cell is descended from a glob-like array of prokaryotes, with internal division of labor and specialization, then by one simple scheme, the specialist subtypes would be defined and organized by something like mathematical array indexes. For parsimony, assume that these array indexes are the different kinds of histone marks, and that they simultaneously are used to stabilize specialist-specific wormholes. A given lock-key pair would wormhole specifically across regions of the shared genome not needed by that particular specialist.

 A secondary function of the array indexes would be to implement wormholes that execute between-blocks jumps within the specialist's own program-like KB. With consolidation of most genetic material in a nucleus, the histone marks would serve only to produce these secondary kind of jumps while keeping functions separate and maintaining an informational link to the ancestral cytoplasmic compartment. The latter could be the basis of sorting processes within the modern eukaryotic cell.

Monday, June 27, 2016

#6. Mental Illness as Communication [neuroscience, genetics]

NE     GE     
Red, theory; black, fact.

The effects of most deleterious mutations are compensated by negative feedback processes occurring during development in utero. However, if the population is undergoing intense Darwinian selection, many of these mutations become unmasked and therefore contribute variation for selection. (Jablonka and Lamb, 2005, The MIT Press, "Evolution in Four Dimensions")

However, since most mutations are harmful, a purely random process for producing them, with no pre-screening, is wasteful. Raw selection alone is capable of scrubbing out a mistake that gets as far as being born, at great cost in suffering, only to have, potentially, the very same random mutation happen all over again the very next day, with nothing learnt. Repeat ad infinitum. This is Absurd, and quarrels with the engineer in me, and I like to say that evolution is an engineer. Nowadays, evolution itself is thought to evolve. A simple example of this would be the evolution of DNA repair enzymes, which were game-changers, allowing much longer genes to be transmitted to the next generation, resulting in the emergence of more-complex lifeforms.

An obvious, further improvement would be a screening, or vetting process for genetic variation. Once a bad mutation happens, you mark the offending stretch of DNA epigenetically in all the close relatives of the sufferer, to suppress further mutations there for a few thousand years, until the environment has had time to change significantly.

Obviously, you also want to oppositely mark the sites of beneficial mutations, and even turn them into recombinant hot spots for a few millennia, to keep the party going. Hot spots may even arise randomly and spontaneously, as true, selectable epi-mutations. The downside of all this is that even in a hot spot, most mutations will still be harmful, leading to the possibility of "hitchhiker" genetic diseases that cannot be efficiently selected against because they are sheltered in a hot spot. Cystic fibrosis may be such a disease, and as the hitchhiker mechanism would predict, it is caused by many different mutations, not just one. It would be a syndrome defined by the overlap of a vital structural gene and a hot spot, not by a single DNA mutation. I imagine epigenetic hot spots to be much more extended along the DNA than a classic point mutation.

It is tempting to suppose that the methylation islands found on DNA are these hot spots, but the scanty evidence available so far is that methylation suppresses recombinant hot spots, which are generally defined non-epigenetically, by the base-pair sequence.

The human brain has undergone rapid, recent evolutionary expansion, presumably due to intense selection, presumably unmasking many deleterious mutations affecting brain development that were formerly silent. Since the brain is the organ of behavior, we expect almost all these mutations to indirectly affect behavior for the worse. That explains mental illness, right?

I'm not so sure; mental illnesses are not random, but cluster into definable syndromes. My reading suggests the existence of three such syndromes: schizoid, depressive, and anxious. My theory is that each is defined by a different recombinant hot spot, as in the case of CF, and may even correspond to the three recently-evolved association cortices of the brain, namely parietal, prefrontal, and temporal, respectively. The drama of mental illness would derive from its communication role in warning nearby relatives that they may be harbouring a bad hot spot, causing them to find it and cool it by wholly unconscious processes. Mental illness would then be the push back against the hot spots driving human brain evolution, keeping them in check and deleting them as soon as they are no longer pulling their weight fitness-wise. The variations in the symptoms of mental illness would encode the information necessary to find the particular hot spot afflicting a particular family.

Now all we need is a communication link from brain to gonads. The sperm are produced by two rounds of meiosis and one of mitosis from the stem-like, perpetually self-renewing spermatogonia, that sit just outside the blood-testes barrier and are therefore exposed to blood-borne hormones. These cells are known to have receptors for the hypothalamic hormone orexin A*, as well as many other receptors for signaling molecules that do or could plausibly originate in the brain as does orexin. Some of these receptors are:
  • retinoic acid receptor α
  • glial cell-derived neurotrophic factor (GDNF) receptor
  • CB2 (cannabinoid type 2) receptor
  • p75 (For nerve growth factor, NGF)
  • kisspeptin receptor.

*Gen Comp Endocrinol. 2016 May 9. pii: S0016-6480(16)30127-7. doi: 10.1016/j.ygcen.2016.05.006. [Epub ahead of print] Localization and expression of Orexin A and its receptor in mouse testis during different stages of postnatal development. Joshi D1, Singh SK2.

PS: for brevity, I left out mention of three sub-functions necessary to the pathway: an intracellular gonadal process transducing receptor activation into germ line-heritable epigenetic changes, a process for exaggerating the effects of bad mutations into the development of monsters or behavioral monsters for purposes of communication, and a process of decoding the communication located in the brains of the recipients.