Tuesday, December 26, 2017

#34. The Pilgrim and the Whale [evolutionary psychology]


Red, theory; black, fact.

Just as the whale must hold its breath to obtain its food from the sea, so must a human restrain his or her anger to obtain a paycheck from society. 

The ecological niche occupied by the whale places two of its drives in contradiction: the drive to eat and the drive to breathe. In humans, the contradictory drives are eating and dispersal.

Dispersal is a biological process tending to expand the geographical range of a species. Left to itself, the range shrinks inexorably because of natural disasters such as fire, frost, famine, drought, and pestilence wiping out all members of a given species in a given habitat. When each habitat occupied by the species has had its disaster, the species will be extinct if it has not been dispersing all along. Dispersal re-populates the devastated habitats as they become able to support life again, thereby staving off extinction.

Unfortunately, human dispersal begins with fraught political contests. As soon as one side gets the upper hand, the other must flee. Result: mass migration, i.e., dispersal. Most human anger is really dispersal hunger. However, when people get mad, they break stuff. Stuff like buildings, airports, factories, railway lines, etc. This is the infrastructure on which we all depend for our survival. Because our ecological niche is in a fragile built environment, we are required to compromise between eating and dispersal. And there you have my analysis of the biological roots of our unhappiness.

This contradiction in drives is the ultimate reason why every able-bodied Muslim must make the pilgrimage to Mecca at least once in their lifetime: it mellows them out by giving something to the dispersal drive. The same effect would explain the fact that first-generation immigrants are generally more law-abiding than the natives.

Other institutions that may exist to relieve dispersal hunger are: tourism, the fitness movement, Seeing the World, conference-going, joining the Navy, going away to university, visiting faraway relatives for the holidays, companies moving their employees around a lot, and others I'll think of tomorrow morning.

Catholicism is also famous for its tradition of pilgrimage, to such places as Jerusalem, Rome, Lourdes, and Santiago de Compostela, the latter still popular today. Protestantism has no such tradition, however.

Judaism, Hinduism, and Buddhism all have strong traditions of pilgrimage, and the practice is so universal that it has been proposed as a Jungian archetype by Clift and Clift. I myself walk a lot, because I cannot afford a car or a downtown apartment close to all the amenities. But is that the ultimate reason? 

Happy trails.

Sunday, December 17, 2017

#33. Emotions [evolutionary psychology, genetics, neuroscience]

EP    NE    GE

Red, theory; black, fact.

All sexually reproducing species may have a long-range guidance system that that could be called proxy natural selection, or preferably, post-zygotic gamete selection (PGS). This is basically a fast form of evolution in which individual cells, the gametes, are the units of selection, not individuals. Selection is conjectured to happen post-zygotically (i.e., sometime after the beginning of development, or even in adulthood) but is retroactive to the egg and sperm that came together to create the individual. Each gamete is potentially unique because of the crossing-over genetic rearrangements that happen during its maturation. This theory explains the biological purpose of this further layer of uniqueness beyond that due to the sexual mixing of chromosomes, which would otherwise appear to be redundant.

Our emotions are conjectured to be programmed by species-replacement group selection and to serve as proxies for increases and decreases in the fitness of our entire species.

A further correlate of an emotion beyond the cognitive and autonomic-nervous-system components would be the neurohumoral component, expressed as chemical releasing and inhibiting factors that enter the general circulation via the portal vessels of the hypothalamus, blood vessels which are conventionally described as affecting only the anterior pituitary gland. These factors may reach the stem-like cells that mature into egg and sperm, where they set reversible epigenetic controls on the level of crossing-over that will occur during differentiation. Large amounts of crossing-over are viewed as retroactively penalizing the gametes leading to the individual by obfuscating or overwriting with noise specifically the genetic uniqueness of said original gametes. In contrast, low levels of further crossing-over reward the original gametes with high penetrance into the next generation. Here we have all the essential ingredients of classical natural selection, and all the potential, in a process that solves problems on an historical timescale.

Crossing-over happens only between homologous chromosomes, which are the paternal and maternal copies of the same chromosome. Human cells have 46 chromosomes because they have 23 pairs of homologous chromosomes. The homologous-chromosome-specificity of crossing-over suggests that the grand optimization problem that is human evolution has been broken down into 23 smaller sub-problems for the needs of the PGS process, each of which can be solved independently, without interactions with any of the other 22, and which involves a 23-fold reduction in the number of variables that must be simultaneously optimized. In computing, this problem-fragmentation strategy greatly increases the speed of optimization. I conjecture that it is one of the features that makes PGS faster than classical natural selection.

However, we now need 23 independent neurohumoral factors descending in the bloodstream from brain to testis or (fetal) ovary, each capable of setting the crossing-over propensity of one specific pair of homologous chromosomes. Each one will require its own specific receptor on the surface of the target oogonia or spermatogonia. In the literature, I already find a strange diversity of cell-surface receptors on the spermatogonia. I predict that the number of such receptors known to science will increase to at least 23. None of this is Lamarkism, because nervous-system control would be over the standard deviation of behavioral traits, not their averages.

Naively, this theory also appears to require 23 second messengers to transfer the signals from cell surface to nucleus, which sounds excessive. Perhaps the second messengers form a combinatorial code, which would reduce the number required by humans to log2 (23) = 4.52, or 5 in round numbers. This is much better. Exactly five second-messenger systems are known, these being based on: cyclic AMP, inositol triphosphate, cyclic GMP, arachidonic acid, and small GTPases (e.g., ras). However, many mammalian species have many more than the 32 chromosome pairs needed to saturate a 5-bit address space. If we expand the above list of second messengers with the addition of the calcium/calmodulin complex, the address space expands to 64 pairs of homologous chromosomes, for a total ploidy of 128. This seems sufficient to accommodate all the mammals. Thus, a combinatorial second-messenger code representable as a five- or six-bit binary integer in most organisms would control the deposition of the epigenetic marks controlling crossing-over propensity.

If the above code works for transcription as well as epigenetic modification, then applying whatever stimuli it takes to produce a definite combinatorial second-messenger state inside the cell will activate one specific chromosome for transcription, so that the progeny of the affected cell will develop into whatever that chromosome specifies, be it an organ, a system, or something else. And there you may have the long-sought key to programming stem cells. You're welcome.

The requirement that the evolution of each chromosome contribute independently to the total increase in fitness suggests that a chromosome specifies a system, like the nervous system or the digestive system. We seem to have only 11 systems, not 23, but more may be defined in the future.

A related concept is that a chromosome specifies an ancestral, generic cell type, like glial cells (4 subtypes known) or muscle cells (3 subtypes known). The great diversity of the neurons suggest that they must be reclassified into multiple basic types, perhaps along the lines suggested by the functional classification of the cranial nerves: general somatic, general visceral, and special somatic (i.e., specific senses).

A third concept for function assignment to homologous pairs of chromosomes postulates a hypothetical maximally divided genome in which each cell type has its own chromosome pair, a state conjectured to seldom occur in nature. Co-evolution of clusters of cell types (e.g., neurons and glia; bone and cartilage) would create selection pressure for the underlying cell-type-specific chromosomes to become covalently linked into the larger chromosomes that we see in the actual karyotypes. Thus, each observed homologous pair would correspond to a few cell types that are currently co-evolving, which seems to return us to the system or organ concept.