Monday, June 5, 2017

#31. The Russian-dolls--multiverse Part II [physics]

PH
Red, theory; black, fact.

6-05-2017
Forget what I wrote last post about "thin dimensions"; leptons arise as electromagnetic wave functions originating in p2 that are transported into our p3 universe/condensate by ordinary diffusion and convection. Wave functions in p2 that are already leptons become our baryons when they are transported in. The only kind of wave functions that are "native" to a given frame of reference are electromagnetic (photonic) in that frame of reference. If they subsequently propagate towards increasing p (inwards) they gain mass as matter; if they propagate towards decreasing p (outwards), they first lose mass as matter until they are photonic (i.e., massless) and then gain mass as antimatter.

6-20-2017
This scenario gives rise to previously unconsidered solutions to outstanding problems in cosmology. For example, dark matter could be just excess electrons that lack protons with which to bind. You would have to argue that we don't see them because they would collectively appear as a potential that is smooth on all but galactic scales, and it is only variations in potential, aka electric fields, that cause scattering of probe particles. Such variations would be common only in neutral matter.

6-05-2017
To produce stable leptons from in-migrating photons, the first condensates, the p2s, would have had to be rotating simultaneously about three mutually perpendicular axes, by the assumptions of two posts ago. If this is impossible for p3 physics, we have to appeal to the possibility of a different physics in p1 for any of these ideas to make sense.

A "universe" is something like an artist's canvas with a painting in progress on it. First, nature makes the blank canvas, and then, in a second stage, puts the information content on it. Consider the moon. It formed out of orbiting molten spray from the collision of two similarly-sized planetesimals. In the molten state, its self-gravity could easily round it up into a perfect sphere which could have solidified with a mostly smooth surface. Call this smooth surface the "canvas." Subsequently, the very same force of gravity would have brought down meteors to cover the surface in an elaborate pattern of craters. Call this the "painting." 

Now consider the neutronium core of a neutron star, viewed as a p4, or small universe. The tremendous energy release of the catastrophic gravitational collapse in which it forms homogenizes all the matter into pure neutrons, thought to be a superfluid. This creates the "canvas." Subsequently, matter and energy from our p3 migrate into the super fluid without enough energy release to homogenize them, producing a "painting" of leptons (our photons), baryons (our leptons), and "uberbaryons" (our baryons). Indeed, the neutron-star core is actually thought to be not pure neutronium, but neutronium containing a sprinkling of free protons and electrons (as seen in p3, of course).

No comments:

Post a Comment

Comments are held for moderation before publication to the blog.