Wednesday, March 29, 2017

#25. The Phasiverse [physics]


Red, theory; black, fact

The nucleus around which a theory of everything will hopefully crystallize.


The Concept

Our reality, the world of appearances, is encoded in the relative phases of an ineffably large number of oscillators, each of which is a kind of primitive clock.

Inspiration from Quantum Mechanics 

An early interpretation of the theory of quantum mechanics was that there is a harmonic oscillator somehow assigned to each point in space, and that these account for the matter fields of the universe. Examples of oscillators would be a mass bouncing up and down on a spring and an electronic device called a tank circuit, which is just one capacitor connected across the terminals of one inductor. 

Consider Huygens's Clocks

If a set of such oscillators can communicate with each other (exchange oscillatory energy), this is called coupling, and it can make the oscillators tend to pull each other in to the same, common phase. The Huygens's clocks experiment began with two old-school pendulum clocks in a case with their pendulums swinging in some random phase relationship. The next day, mysteriously, the pendulums were found swinging in opposite directions. The coupling is evidently due to tiny, rhythmic forces travelling through the common supporting beam from clock to clock.

Enter Positive Feedback 

If the coupling is positive, as assumed here, (it's negative in the above experiment), the phase pull-in effect becomes stronger the closer the two phases approach each other, causing a positive feedback effect. This is very reminiscent of Hebb's rule in neuroscience and the tendency of natural attractive forces such as gravity to depend inversely on distance. 

A Organizing Principle 

The phase pull-in effect provides a simple answer to questions such as where the organizing principle comes from. All you need to explain is where the oscillators themselves all came from, how they oscillate, and why they are coupled. Since the oscillators begin life in spacelessness, they cannot avoid interacting to produce a coupling effect. Second, oscillators need no past or future; they can arise as a succession of causally related nows that alternates between two contrasting forms. Figures in Conway's game of Life would seem to be examples of this alternation.

Enter Entropy

A great many oscillators all with the same phase is not an interesting universe. However, suppose that this is impossible because of "train wrecks" happening during the synchronization process that produce frustration of the synchronization analogous to spin frustration in spin glasses. An example would be a cyclic relationship of oscillators in which a wave goes around the loop endlessly. Such cycles may correspond to particles of matter in our universe, and the spiral waves that they would throw off into surrounding space may correspond to the fields around such particles.

Gravitational Lensing Explained

A black hole or galaxy would be surrounded by a tremendous number of such radiating fields. The resulting desychronization of the oscillators making up the surrounding space would increase the average phase difference between phasically nearby oscillators, thereby inhibiting their coupling, thereby inhibiting the travel of signals generally through the region. Result: the speed of light is reduced in the vicinity, resulting in the bending of light rays, called gravitational lensing.

Quantization is not explained, which is a limitation of the present theory.

Sunday, March 26, 2017

#24. Proxy Natural Selection from the Inside [evolutionary psychology, genetics]

EP   GE

Red, theory; black, fact

Morning hymn at Sebastian Bachs' By Toby Edward Rosenthal


What Does Darwinian Fitness Feel Like?

My first post on post-zygotic gamete selection (PGS) left open some questions, such as what it should feel like, if anything, when one is fulfilling the species objective function and being deemed "proxy-fit" by one's own hypothalamus.

How Our Emotions Program Us

I conclude that it's just what you would think: you feel joy and/or serenity. Joy is one of Ekman's six basic universal human emotions, the others being fear, anger, disgust, sadness, and surprise. I think that emotions collectively are the operations of the highest-level human behavioral program. (That is, the program in its broadest outlines.) The unpleasant emotions force you to get off the couch until they are taken care of, and joy lets you get back on. Thus, the unpleasant four are the starting emotions, and joy is the stopping emotion. 

Surprise may be a meta-emotion that tells you that your threshold for experiencing one of the other emotions is too high, and immediately lowers it. Each activation of an emotion may tend to lower the threshold for activating it next time, which implies a positive feedback loop capable of changing the personality to suit suddenly changed circumstances, especially if the emotion eventually begins issuing with no trigger at all.

Where Our Emotions Come From

To relate this to the mechanism of PGS, the crossing-over events that went into making the sperm cell that made a given person would theoretically affect brain development more than anything else, specifically connecting some random stimulus to one of the unpleasant primary emotions. This creates temperament, and thus  personality, which is the unique quality which they have to offer the world, and on which they are being tested by history. If the actions to which their own, special preferences propel them are what the species objective function is looking for, they succeed, feel joy and serenity, and experience an altered methylation status of the DNA in the spermatogonia if male, which suppresses further crossing over in the manufacture of sperm, so that their personality type breeds true, which is what the population needs. Famous musical families, for example, may originate in this way.

PGS is quick evolution to respond to challenges that come and go on less than a multi-thousand generation timescale, and it explains the complexities of sexual reproduction.

A Flaw in the Argument, Addressed

However, trees have no behavior, much less personalities, and yet they have sexual reproduction. However, trees probably adapt quickly not by behavioral change, but by changes in their chemistry. The chemistry in question would be the synthesis of pesticidal mixtures located in the central vacuole of each plant cell. In terms of such mixtures, each tree should be slightly unique, an easily testable prediction.

The Big Picture 

Each of the four unpleasant "starting" emotions may sub-serve one of the four pillars of the species objective function. Thus: sadness, altruism; disgust, genetic diversity (due to point mutations; what is motivated here is the screening of such novelties during mate selection, screening always being the expensive part); fear, memetic diversity (or motivating prescreening of memetic novelties through fear of public speaking); anger, dispersal.

Each of these emotions seems to have another use, in preserving the life of the individual, as opposed to the entire species. Thus: sadness, unfavorable energy balance; disgust, steering one away from concentrations of harmful bacteria; fear, avoidance of injury and death; anger, driving away competitors for food and mates.

Picture credits: https://commons.wikimedia.org/wiki/Commons:Copyright_tags/Country-specific_tags#United_States_of_America